Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | |-------------------|----------------------------|---------------------|--------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 0620/21 | | Paper 2 | | Oct | ober/November 2015 | | | | | 1 hour 15 minutes | | Candidates ans | wer on the Question Paper. | | | | No Additional M | aterials are required. | | | ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 16. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. CAMBRIDGE International Examinations 1 The structures of six compounds are shown below. Answer the following questions about these substances. Each compound may be used once, more than once or not at all. (a) Which substance, A, B, C, D, E or F, | (i) | gives a white precipitate on addition of an aqueous solution of sodium sulfate, |
[1] | |------|---|---------| | (ii) | is a component of many fertilisers, |
[1] | | iii) | contains a Group III element, |
[1] | | iv) | is an acidic gas at room temperature, |
[1] | | (v) | turns anhydrous cobalt chloride pink, |
[1] | | vi) | is the main component of natural gas? |
[1] | **(b)** Compound **A** can be made by direct combination of chlorine and aluminium using the apparatus shown below. - (i) On the diagram above, draw an arrow to show where heat is applied. [1] - (ii) Suggest **one** safety precaution that should be taken when carrying out this experiment.[1] (iii) Complete the symbol equation for this reaction. $$2Al + \dots Cl_2 \rightarrow Al_2Cl_6$$ [1] [Total: 9] 2 A student measures the maximum temperature changes when five different solids, **P**, **Q**, **R**, **S** and **T**, are dissolved separately in water. She uses the apparatus shown below. | | | | | _ | | | |-----|-------------|-----------|---------|---------|----------|-------| | (a) | The student | stirs the | mixture | as each | solid is | added | | | Suggest why she does this. | | |----|--|-----| | | | | | | | [1] | | b) | Suggest two factors which should be kept the same to make the experiment a fair test. | | | | 1 | | | | 2 | [2 | | | | | (c) The table of results is shown below. | solid added | initial temperature of the water/°C | highest temperature of the solution/°C | |-------------|-------------------------------------|--| | Р | 20 | 24 | | Q | 18 | 23 | | R | 19 | 16 | | S | 22 | 23 | | Т | 20 | 18 | | (i) | Which solid gave the greatest temperature change when dissolved in water? | | |-----|---|-----| | | | [1] | | ii) | Which solids gave an endothermic energy change when dissolved in water? | | | | and | [2] | | (d) | Rac | lioactive isotopes can b | e used as a sou | urce of energy. | | | |-----|-------|---|---|-------------------|--------------------------------|-------------| | | (i) | Which one of the follow
Put a ring around the o | • | a radioactive is | sotope? | | | | | ¹² ₆ C | ²³⁵ ₉₂ U | 1 ₁ H | ⁶⁵ ₃₀ Zn | [1] | | | (ii) | An isotope of radium, I | Ra, has 226 nuc | cleons in its nuc | cleus. | | | | | How many neutrons do Use your Periodic Table | | contain? | | | | | | | | | | [1] | | (| (iii) | Give one use of radioa | active isotopes i | n medicine. | | | | | | | | | | [1] | | (e) | Fra | ctions obtained from the | e distillation of p | etroleum are al | so sources of energy. | | | | (i) | Which one of the follow
Put a ring around the o | | used as a fuel | for jet aircraft? | | | | | bitumen | gasoline | kerosene | naphtha | [1] | | | (ii) | Heptadecane, C ₁₇ H ₃₆ , | is present in the | fuel oil fraction | 1. | | | | | Complete the equation | for the cracking | g of heptadecar | ne to form two hydrocarbo | ns. | | | | C | $C_{17}H_{36} \rightarrow C_{12}H_{26}$ | ; + | | [1] | | | | | | | | [Total: 11] | | | | | | | | - | **3** (a) Nickel is extracted from nickel(II) oxide, NiO, by heating with carbon. Complete the symbol equation for this reaction. - (b) Nickel is refined by electrolysis. - (i) Complete the boxes to label the diagram below to show - the negative electrode (cathode), - the positive electrode (anode), - the electrolyte. (ii) At which electrode is the pure nickel formed?[1 [2] - (c) Molten nickel(II) chloride can be electrolysed using graphite electrodes. - (ii) Give two reasons why graphite is used for electrodes. 1. (d) The structures of diamond and graphite are shown below. | (i) | | | |------|--|----------| | | | | | | | [2] | | (ii) | Explain how the structure of graphite relates to its use as a lubricant. | | | | | | | | | [2] | | | [Tot | tal: 13] | 4 A teacher demonstrated the reactivity of calcium with water. He used the apparatus shown below. (a) The teacher measured the volume of gas given off at various times during the reaction. He then repeated the experiment using strontium but keeping all the conditions the same. The graph obtained from the results is shown below. | (i) Explain how the graph shows that strontium is more reactive than calc | cium. | |---|-------| |---|-------| (ii) For the reaction between calcium and water, deduce the volume of gas produced in the first 50 seconds. cm³ [1] | | 9 | |-------|---| | (iii) | At what time was the reaction between strontium and water complete? | | | s [1] | | (iv) | How do you know from the graph that the reaction between calcium and water was not complete 100 seconds after the reaction started? | | | [1] | | (v) | Suggest how the rate of reaction changes when the same mass of calcium is used but in smaller pieces. | | | [1] | | sol | e solution formed at the end of the reaction between strontium and water is alkaline. It is a lution of strontium hydroxide. e teacher titrated this solution with hydrochloric acid using the apparatus shown below. hydrochloric acid burette | | | 25 cm ³ strontium
hydroxide solution | | (i) | What piece of apparatus should be used to put exactly 25.0 cm ³ of the strontium hydroxide solution into the flask? | | | [1] | | What piece of apparatus sh solution into the flask? | nould be used to put exactly 25.0 cm ³ of the strontium hydroxide | |---|--| | | [1] | | A few drops of litmus solution | on was added to the flask. | | Explain why litmus is addetitration proceeds. | ed to the flask and describe what happens to the litmus as the | | | | | | [2 | (ii) (c) The graph below shows how the pH of the solution in the flask changes as the acid is added. (i) Describe how the pH of the solution changes as the titration proceeds. (ii) What volume of acid had been added when the solution had a neutral pH? ______[1] (iii) The symbol equation for the reaction is $$Sr(OH)_2 + 2HCl \rightarrow SrCl_2 + 2H_2O$$ Give the name of the salt formed in this reaction.[1] [Total: 13] **5** A student left a cube of ice on a plate in a warm room. The diagrams below show what happened to the ice. after 30 minutes | (a) Describe and explain what happened to the ice. In your | |--| |--| | • | describe | and | explain | the | change | of | state | which | occurs, | |---|----------|-----|---------|-----|--------|----|-------|-------|---------| |---|----------|-----|---------|-----|--------|----|-------|-------|---------| | explain | this | change | usina | the | kinetic | particle | theory | /. | |---------|------|--------|-------|-----|---------|----------|--------|----| | | | | | | | | | | |
 |
 |
 |
 | |------|------|------|---------| | | | | | |
 |
 |
 |
 | | |
 | |
 | | | | | | |
 |
 |
 |
 | | | | | | |
 |
 |
 |
 | | | | | | |
 |
 |
 |
 | | | | | [5] | |
 |
 |
 |
[∨] | (b) Water is used in industry and in the home. | (i) Give one use | of water in | industry | |-------------------------|-------------|----------| |-------------------------|-------------|----------| | [1] | |-----| |-----| (ii) Give one use of water in the home. (c) The symbol equation for the reaction of lithium with water is shown below. $$2Li(s) + 2H2O(I) \rightarrow 2LiOH(aq) + H2(g)$$ (i) Write the word equation for this reaction. | [1] | |-----| |-----| (ii) Describe two observations which can be made when lithium reacts with water. |
 |
 | |------|------| | | |[2] (iii) Describe how the reactivity of potassium with water compares with the reactivity of lithium with water. | | [1 | 1 | |--|----|---| | | - | - | | (d) | Eth | Ethanol can be made by the reaction of steam with ethene. | | | | | | | | |-----|------|---|---|-------------|--|--|--|--|--| | | (i) | Draw the stru | cture of ethene showing all atoms and all bonds. | [1] | | | | | | | | (ii) | Describe the | conditions required for this reaction. | | | | | | | | | ` , | | | [2] | | | | | | | | | | | | | | | | | | (e) | The | e table below d | escribes the reaction of water or steam with different metals | | | | | | | | | | metal | observations | | | | | | | | | | calcium | reacts rapidly with cold water | | | | | | | | | | cerium | reacts slowly with hot water and very rapidly with steam | | | | | | | | | | cobalt | reacts with steam when cobalt powder is very hot | | | | | | | | | | iron | reacts very slowly with hot water and readily with steam | | | | | | | | | Put | these metals | in order of their reactivity. | | | | | | | | | lea | st reactive — | → most re | active |
[2] | | | | | | | | | | | (Total: 16) | | | | | | [Total: 16] **6** When rubber is distilled, a chemical called isoprene is formed. The structure of isoprene is shown below. | (a) | Dec | duce the molecular formula of isoprene. | | |-----|------|---|-----| | | | [| [1] | | (b) | Isop | orene is an unsaturated compound. | | | | Des | scribe a test for an unsaturated compound. | | | | test | | | | | resi | ult[| [2] | | (c) | Isop | orene forms an addition polymer. | | | | (i) | What feature of the isoprene molecule is responsible for it forming an addition polymer? | ? | | | | [| [1] | | | (ii) | Give the name of another addition polymer. | | | | | [| [1] | | (d) | Isop | prene does not conduct electricity. | | | | Exp | plain why. | | | | | [| [1] | | (e) | Sta | te the names of two substances formed when isoprene undergoes incomplete combustio | n. | | | | [| 2] | | (T) | isoprene can be prepared from 3-methylbutan- | 1-01. | |-----|---|-------------------| | | To which group of compounds does 3-methylbic Tick one box. | utan-1-ol belong? | | | alcohols | | | | alkanes | | | | alkenes | | | | carboxylic acids | | | | | [1] | | | | [Total: 9 | | 7 | (a) | Sodium | is in | Group | I of the | Periodic | Table. | |---|-----|----------|--------|-------|-----------|----------|---------| | | \u, | Codidili | 10 111 | Oloup | I OI LIIC | CITOGIC | I abic. | Describe the structure of a sodium atom. In your answer refer to, | • | the type | and | number | of | each | subatomic | particle | present | |---|-----------|------|---------|---------|-------|-----------|----------|----------| | - | tile type | alia | HUHINDO | \circ | CUOII | Jubatonno | partiolo | PICOCIII | | • | the | charges | on | each | type | of | subatomic | particle | |---|-----|---------|----|------|------|----|-----------|----------| |---|-----|---------|----|------|------|----|-----------|----------| |
 | |------| | | | | | | | | | | | | | [5] | | | - (b) Sodium carbide, Na_2C_2 , reacts with water to form ethyne, C_2H_2 . - (i) Complete the symbol equation for this reaction. $$Na_2C_2$$ + H_2O \rightarrow $NaOH$ + C_2H_2 [2] (ii) Ethyne is a hydrocarbon. What is the meaning of the term hydrocarbon?[1] (iii) Calculate the relative formula mass of sodium carbide. [1] [Total: 9] DATA SHEET The Periodic Table of the Elements | | | | | | | | | Gre | Group | | | | | | | | | |-----------------------------|--|--|-----------------------------------|----------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|------------------------------------|--------------------------------|----------------------------------|---------------------------------| | _ | = | | | | | | • | | | | | = | ≥ | > | 5 | \ | 0 | | | | | | | | | T
Hydrogen | | | | | | | | | | 4 He lium | | 7
Li
Lithium | Be Recyllium 4 | = | | | | | | | | | | 11
Boron
5 | 12
Carbon
6 | 14 N itrogen 7 | 16
Oxygen
8 | 19 T Fluorine | 20
Neon 10 | | 23
Na
Sodium | 24 Mg Magnesium 12 | E | | | | | | | | | | 27
A t
Aluminium
13 | 28
Si
Silicon | 31
P
Phosphorus
15 | 32
S
Suffur
16 | 35.5 C 1 Chlorine | 40
Ar
Argon | | 39 K | Ca Caldum 20 | Scandium 21 | 48 T Titanium 22 | 51
V
Vanadium
23 | Cr
Chromium
24 | 55
Mn
Manganese
25 | 56
Fe
Iron
26 | 59
Co
Cobalt | 59 Ni Nickel | 64 Cu Copper | 65 Zn Zinc 30 | 70
Ga
Gallium
31 | 73
Ge
Germanium
32 | 75
AS
Arsenic | Selenium | 80
Br
Bromine
35 | 84 Kr ypton 36 | | Rb Rubidium | Sr
m Strontium | 89 Y | 2r
Zirconium
40 | 93
Nb
Niobium
41 | 96
Mo
Molybdenum
42 | Tc
Technetium
43 | Ru
Ruthenium
44 | 103
Rh
Rhodium
45 | 106 Pd Palladium 46 | 108 Ag
Silver
47 | 112
Cd
Cadmium
48 | 115
In
Indium
49 | 119
Sn
Tin | Sb
Antimony
51 | 128 Te Tellurium 52 | 127 T lodine | 131
Xe
Xenon
54 | | Caesium | | 139 La Lanthanum 57 * | 178
Hf
Hafnium
72 | 181 Ta Tananan Tananan Ta | 184 W Tungsten 74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192 I r
Iridium | 195 Pt Platinum 78 | Au Gold 79 | 201
Hg
Mercury
80 | 204
T 1
Thallium | 207 Pb Lead 82 | 209 Bi Bismuth | Po
Polonium
84 | At
Astatine
85 | Radon 86 | | Fr
Francium
87 | 226
Ra
m Radium
88 | 227
Ac
Actinium 1 | | | | | | | | | | | | | | | | | *58-71
190-10 | *58-71 Lanthanoid serie
190-103 Actinoid series | *58-71 Lanthanoid series
190-103 Actinoid series | | 140 Ce Cerium 58 | 141
Pr
Praseodymium
59 | Neodymium
60 | Pm
Promethium
61 | 150 Sm Samarium 62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159 Tb Terbium 65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thullum | Yb Ytterbium 70 | Lutetium 7.1 | | Key | ъ Х а | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | 232
Th
Thorium | Pa Protactinium | 238
U
Uranium
92 | Neptunium | Pu Plutonium 94 | Am Americium | Curium | Bk Berkelium 97 | | Es
Einsteinium
99 | Fm
Fermium
100 | ء ا | Nobelium
102 | Lr
Lawrenciur
103 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.